
Introduction
Digital modules and the systems they comprise are
growing ever more powerful – a benefit that brings
with it increased complexity. As this complexity
grows, so too does the need for more rigorous debug,
verification, and stress testing. These activities are
components of an engineering process known as
“functional validation.”

In contrast to characterization measurements in
which a device or System Under Test (SUT) is driven
to the extremes of its performance envelope (usually
to determine the unit’s absolute operating limits),
functional validation examines the SUT’s behavior
under relatively “normal” conditions. The purpose
of functional validation is to test the unit’s ability to
perform its logic operations correctly, typically over
a range of voltage and timing tolerances.

The applied test data is called the “pattern,” and a
functional test simply sends the pattern to a SUT

and compares the device’s actual reaction against
predicted data. In reality, the functional test is a
Boolean truth table of the SUT’s logic states. The task
of producing the stimulus falls to a tool known as a
pattern generator, which is separate from and
complementary to the test instrument’s acquisition
capability. Even though a functional test is usually
limited to nominal operating values (frequency,
timing, and voltage), the pattern generator is respon-
sible for producing constantly varying stimulus
information at high clock rates. To do so, it recog-
nizes and reacts, in real time, to instructions from
the SUT and the other elements of the measurement
system.

This application note discusses the TLA7PG2
pattern generator, a module in the TLA 700 Logic
Analyzer Series, and its use in the functional valida-
tion environment.

Real-Time Pat tern Generat ion Answers

Funct ional Val idat ion Challenges

Application Note

®

2

Overview of Functional Validation
Requirements and Solutions
Digital system functional validation challenges are
growing in several dimensions:
• Higher clock rates
• Lower and mixed logic voltages
• More I/O connections
• More functionality at every level (chip, module,

bus, system)

Responding to the incessant call for digital systems
that run bigger applications faster, designers are
implementing higher clock speeds at both the chip
and system level. This places more exacting
demands on the functional validation test platform.
Stimulus signals must be stable at frequencies into
the hundreds of megahertz. In addition the signals
must have faster edge rates and narrower data pulses
than ever before. The TLA7PG2’s programmable
clock delivers frequencies up to 268 MHz. It
provides accurate internally derived clock signals,
and also accepts an external clock input and faith-
fully reproduces the duty cycle of the external
signal. This feature is particularly important when
testing systems that use both edges of the clock. Even
a small amount of duty cycle distortion can cause
SUT instability at today’s higher operating frequen-
cies

In pursuit of increased data bandwidth throughout a
digital system, inter-module and intra-module buses
are getting wider. Moreover, the number of buses is
increasing as devices add new functions.
Consequently the number of stimulus channels
required for functional validation has grown dramat-
ically. TLA7PG2 modules can be concatenated to
achieve a wide range of channel counts – as few as
64 channels, or as many as 1024. This modular
architecture makes it possible to configure for your
initial requirements and expand cost-effectively as
your needs change.

As SUT functionality increases, longer and more
complex test patterns are required. That means an
ever-increasing appetite for pattern memory. The
TLA7PG2 offers up to 2M lines of pattern memory,
ample for many applications. In addition, sequen-
cing techniques expand the pattern memory, in
effect, to infinite capacity.

Sequencing Multiplies Pattern Capacity
Without Limit
At first glance, a functional test pattern might look
rather imposing. If stretched “end to end,” it would

consist of many thousand, or even millions, of cycles
of binary data. If it was necessary to store each cycle
discretely in a conventional memory, the pattern
generator would have to be huge – and costly.
Fortunately, there is an elegant solution. What
appears to be a long and convoluted string of binary
information can be broken into a series of smaller,
more manageable segments that repeat periodically.

For example, consider the problem of emulating a
series of front-panel push-button actions. A button
push may prompt a large number of operational
cycles. But the resulting data might be very similar
among all of the buttons, with only a few bits
changing to distinguish a particular button. Even so,
the SUT needs to see the whole series of cycles every
time.

The brute-force method would be to store a copy of
every button command with all its associated code.
But this simplistic approach is wasteful. Obviously it
would quickly consume the stimulus source’s
memory, especially if the routine is long. The button
command is a perfect candidate to be defined once
and used many times – if the fixed portion of the
pattern can be separated from the bits that change
with each new button (see Figure 1). This is where
the TLA7PG2 pattern generator steps in.

The TLA7PG2 includes a sophisticated sequencer
designed to take advantage of repetitive situations
like this. The pattern generator’s pattern memory can
be partitioned into “blocks” of varying lengths. A
block is a self-contained code module, potentially
made up of many individual lines of pattern data. In
our push-button example, the fixed portion of the
button routine is defined as a block. The block is
used time after time – but is stored only once.
Smaller blocks containing the changing bits are
interleaved with the fixed blocks, in effect producing
a sequence of commands that moves from button to
button.

This methodology does more than just save memory
space. It allows you to easily program variations that
produce stresses such as key bounce and key noise.
These can be interspersed with the “good” button-
push routines, or can be cycled as part of a separate
stress test. It is also possible to emulate more human-
like button pushes by adding time-delay blocks to
slow the key presses. In any event, the same blocks
can be re-used with a variety of sequences to emulate
different hierarchies of button-pushes. Up to 4096
blocks can be defined within the pattern memory.

In this simple example, we have seen how block-
based sequencing can conserve pattern memory.
Why is that so important when you can have up to
2 Mb of pattern memory serving each test pin?

Figure 1: Interleaved Setup and Button blocks.

Because block sequencing provides effectively
unlimited pattern depth. When it is necessary to run
tests over a period of hours or even days (possibly
while varying voltages or temperatures, for instance)
the pattern generator sequencer is the only way to
deliver the billions of operational cycles needed for
the job.

The key to this capability resides in the TLA7PG2’s
sequencing instruction memory. This is a separate
and independent memory that is used to store up to
4000 commands to control the pattern memory. Note
again, the pattern data and the sequence instructions
are stored in two different memories – not just parti-
tions of the same contiguous RAM. This is important
because it means you don’t have to trade off
sequence space as patterns grow longer or more
numerous.

The sequencer is designed for ease of use and effi-
ciency. Fundamentally, it allows you to choose
which pattern blocks are used, in what order, and
how many times. The sequencer implements a basic
command set that makes it easy to multiply a few
lines of pattern data into an exhaustive test with
thousands or millions of operational cycles (see
Figure 2).

Multiplying Nanoseconds to
Create Longer Delays
Going back to our push-button example, it’s easy to
use commands such as Repeat to produce a realistic
stimulus stream for the SUT. For example, the
programmable Repeat count “pushes” any button
multiple times (up to 65,536!), allowing you to
capture responses to the button action throughout

the SUT system. Equally important, the Repeat
command is useful for setting up delay times
between button pushes. By creating a “delay block”
with no activity and repeating that block to accrue
time, it’s possible to generate delays that mimic real
human reaction times. To illustrate the concept, let’s
assume we want a 200 ms delay between button
pushes:

In addition to explicit commands such as Repeat, the
TLA7PG2 can respond to external asynchronous
interrupts from the SUT and the measurement
system. These events make it possible to interact
with SUT and TLA700 system activity in real time.

Sequencer Monitors Events to
Respond to SUT and System Activities
The pattern generator offers a robust real-time event
recognition capability that allows it to interact with
the SUT to exercise buses and recognize state transi-
tions. It can be programmed to respond to multiple
events. When a particular event occurs, the sequence
jumps to a predetermined sequence block.

3

Figure 2: A few lines of sequence code produce many cycles worth of pattern vectors.

Many stimulus applications require some synchro-
nization between the pattern generator and the SUT.
For example:
• Diverting to an alternate pattern block when an

exception state occurs in the SUT
• Holding the pattern output until the SUT reaches

a specified state, then continuing the pattern
sequence

• Synchronizing a drive-inhibit function to coordi-
nate input and output operations on bidirectional
or multi-source buses

The TLA7PG2 has eight signal inputs at the probe
interface. Also, there’s a system signal input that can
be derived from the measurement modules in the
TLA700 system. These nine signals can be sensed
concurrently to detect a desired Boolean combina-
tion. Such combinations are known as “events,” and
up to 256 different events can be defined, as well as
various AND and OR combinations of the signal
inputs. Events can be named to associate their occur-
rence with an SUT function, state, or action. The
advanced tracking capability of the TLA 700
measurement modules can detect complex error
conditions and SUT state sequences which can be
sent to the pattern generator as events.

To illustrate the use of events, imagine a test that
verifies design margins for, say, setup times on
another part of the system we tested earlier for
button responses. One of the Q-outputs from the
SUT is connected to a probe signal input. The proce-
dure reduces the setup time in a series of coarse
steps toward a violation. The violation, when it
finally occurs, causes the Q-output to switch, which
is detected by the signal line and prompts an event
named “Fail.” Responding to the Fail event, the
Jump To command sends the sequence to a routine
(again, made up of concatenated blocks) that gradu-

ally increases the setup time (in a series of finer
steps) to pinpoint the margin.

Alternatively, the TLA7PG2 could be programmed to
jump to a troubleshooting routine. When an event
occurs during block execution, it is latched until the
sequencer reaches the end of the block. Then the
sequencer jumps to a user-specified alternate pattern
block, such as an error routine. An unconditional
jump can be used at the end of the error routine to
jump back to an entry point in the main pattern.

Note that jumps initiated by the pattern sequencer at
block boundaries occur without any latency. This
means that the block jumped to will drive valid data
on the very next clock cycle, even at the maximum
clock speed of 268 MHz!

The Pause/Wait For command also depends on event
recognition. Often, the state machine sequencing of
an SUT cannot be definitively predicted, and the
time required to reach a particular state can vary.
The WAIT FOR command solves this problem. At
the end of any pattern block, the sequencer can be
paused until it detects the status of the SUT indi-
cating the desired state has been reached. As
explained earlier, event definitions and signal inputs
are used to detect the SUT status.

The signal inputs can help with Inhibit timing. In
addition to probe-specific and programmable inhibit
instructions in the pattern block, it’s possible to set
up an Inhibit function that occurs upon detection of
a real-time event from the SUT. The Inhibit function
(which drives the pattern generator probe outputs to
a high-impedance state) is critical to preventing bus
contention problems between the pattern generator
and the SUT for bidirectional buses.

Programmable Drive Voltages Support
Diverse Logic Families
Interfaces to many modules and systems today
require multiple logic levels. It’s common today to
have systems under test that include CMOS logic,
5-volt TTL logic and 3.3-volt logic.

Imagine a digital module designed to be part of, say,
a machine controller of some kind. The module’s
designer has many functions to implement: sensor
signals to be buffered and monitored; control signals
to be processed and bussed; instructions to be stored.
In a perfect world, one logic family could handle all
these chores.

In the world that most of us live in, though, there
may be three or even four device families involved
in the circuit’s operation. The sensor buffers might
be CMOS devices; the control logic and I/O circuitry
might be a TTL-based family; the memory might be a
low-power, low-voltage type for compatibility with
backup batteries.

It all adds up to a nightmare for the designer trying
to connect a pattern generator to such an SUT for
functional validation purposes. Unless there is some
alternative to hooking up a separate type of probe to
each type of test point, the engineer will spend more
time connecting than measuring! The process can
become so cumbersome as to actually discourage
thorough evaluation of the SUT.

4

Figure 3: Photo of P6470 probe.

Fortunately, the TLA7PG2 has a solution. Its unique
variable-voltage TTL/CMOS probe, the P6470 (see
Figure 3), handles all three of these differing levels,
with programmable “logic high” levels ranging from
2 volts to 5.5 volts. This simplifies the test setup and
minimizes the need to reconfigure the test fixture
when changing among different SUT types.

Moreover, the P6470’s variable voltage range also
supports margin testing. By setting the drive levels
close to the lower limit of the logic device and
running test patterns with the TLA7PG2, it’s possible
to verify the limits of system noise immunity. The
voltage can be varied manually during a test to
quickly determine the system margin.

An ECL probe, the P6471, is also available. It can be
mixed freely on the TLA7PG2 with the TTL/CMOS
probes. Between them, the P6470 and P6471 address
all of the prevailing digital logic families (see Figure
4).

Putting the TLA7PG2 Pattern
Generator to the Test
The best way to summarize the capability of the
TLA7PG2 is to set it in the context of a realistic
application. We will verify the real-time response of
an embedded industrial controller. The test require-
ments for such an application are “typical” in that
they pertain equally well to systems ranging from

cockpit readouts to microwave ovens to telecommu-
nications control cards for a wireless base station.

The System Under Test
The system under test (SUT) is controlled by a single
microprocessor and contains the following elements
(see Figure 5):
• A set of static inputs set to one value for the

entire test
• A bidirectional bus used to exchange data with

other control points

5

Figure 4: Voltage setup screen showing various different
probe types and logic levels.

Figure 5: Connection layout for the system-under-test.

• A set of dynamic inputs changed throughout the
test to exercise the software. Some of these inputs
are interrupt-driven, and in our example, the
response to interrupts is time-critical

• A set of dynamic outputs that sends the drive
display signals and status information to the rest
of the system

Because the external system design is not yet
complete, its functions will have to be simulated. In
addition, signals internal to the SUT will require
some 3.3 V drive levels as well as a 5 V TTL and
CMOS levels for the external board inputs.

Overview of the Test Plan
The test has two overall goals:

1. To validate the program logic with a variety of
system inputs whose precise order and timing
would be difficult to generate in the actual
system.

2. To verify the real-time response to unique bursts
of interrupt data designed to stress the system.

Since the SUT has its own control element (the
microprocessor), it must first be initialized. The
static signals and initial dynamic signals are applied
and the clock and other “heartbeat” signals are
repeated until the system signals a “ready” state. A
series of tests are then executed to confirm the
system’s state transitions (as confirmed by bus
output data, display outputs, and a software execu-
tion trace sampled by logic analyzer modules) are
correct for the set of dynamic inputs.

The SUT’s state at the end of each portion of the state
transition test is not absolutely predictable. It may be

in a critical section of code, where it might be sensi-
tive to a series of real-time interrupts. Therefore a
“burst” of interrupt data is sent to test whether the
SUT can respond in time without corrupting the
internal variables of the system. At the end of this
burst test, and after the interrupt processing has been
completed, the state transition testing is resumed.
The test continues until a specific number of cycles
are completed or a logic analyzer module detects an
error.

Connecting the SUT and Starting the Test
The test calls for both pattern generation and acqui-
sition capability, therefore both the TLA7PG2 and
logic analyzer modules such as the TLA7N4 will be
required. Any bidirectional signals and all relevant
output signals (both internal and external to the
SUT) are probed by a logic analyzer module. A
second logic analyzer module probes the SUT’s
processor. A processor support package is loaded on
the logic analyzer module to allow software execu-
tion tracking.

The pattern generator is set to drive external signals
at 5 V TTL and CMOS levels, as appropriate, and
internal signals at 3.3 V TTL. The bidirectional bus
is programmed to drive only during chosen output
patterns and will be inhibited the remainder of the
time.

Initialization Blocks
Initialization consists of two pattern blocks (see
Figure 6). The first block sets the static inputs and
the initial dynamic inputs, as well as any control
signals necessary to set those values.

6

Figure 6: Test flow.

The second block maintains these input states and
cycles the “heartbeat” signals. This repeats infinitely
with a test for a valid “Ready” event at the end of
each cycle. The Ready event is sensed using a probe
signal input. When the sequencer detects the Ready
event, it advances to the logic validation tests.

Logic Validation Blocks
The logic validation consists of blocks defined for
specific button pushes or signal pulses (see Figure
6). The bidirectional bus is driven with a set of
blocks that apply valid data, exercise the appropriate
control lines, and then inhibit the pattern generator’s
drive. The validation test is segmented into a series
of independent tests that exercise specific functions
of the SUT. The logic analyzer trigger machine is set
up to watch for, and act on, any of four types of
events during the functional validation test:
1) Detect when the software is in a critical section

of code and notify the pattern generator through
a system signal line.

2) Detect when the interrupt processing has been
completed and notify the pattern generator
through the same system signal line.

3) Detect when a system corruption occurs through
a stack overrun or an improper exception vector,
and capture the data surrounding the error.

4) Count the number of completed cycles and stop
the system when it reaches the desired count.

At the end of each validation test segment, the
pattern generator sequencer checks for the system
signal that indicates a critical code section. If it

detects the signal, it jumps to a set of functional
pattern blocks that send a burst of interrupt data to
the SUT. When the interrupt burst is complete, the
pattern generator again pauses until it senses the
system signal indicating that the interrupt service
routines are complete and the SUT is ready to
resume normal operation. Then the pattern generator
returns to the logic validation test flow.

A second probe event signal monitors the system
trigger line of the TLA 700. At the end of each repeti-
tion of the logic validation tests, this event is exam-
ined to determine whether the logic analyzer has
signaled an end to the test, a result of reaching a
specified cycles count, or has encountered a fatal
error. If not, an unconditional jump sends the
sequence back to the first logic validation test block.

For subsequent tests that require a different order of
inputs, the sequencer can be reprogrammed without
having to modify the detailed vectors within the
blocks.

Summary
The TLA7PG2 Pattern Generator extends the func-
tionality of the TLA 700 Series Logic Analyzers by
producing essentially endless pattern variations at-
speed, matching the needs of today’s fast, complex
microprocessor-based systems. The TLA7PG2 is an
integrated, easy-to-use solution for functional valida-
tion chores. It is equally able to exercise a complex
bus or substitute for an as-yet-unavailable circuit
element.

7

To simulate real-world stresses on SUT

hardware and software, the pattern gener-

ator is required to carry out sophisticated

interactions with the SUT. This is a chal-

lenge that can only be met if the test plat-

form includes two key features:

Context-sensitive event
recognition
Context-sensitive event recognition enables

the pattern generator to tailor its response

to signals from the SUT or the logic

analyzer system. For example, the pattern

generator’s program may contain several

alternative Jump destinations; the correct

Jump during a given cycle depends on the

current SUT state or condition.

Our earlier examples illustrate the concept.

When the SUT reaches a section of critical

code, we want the pattern generator to

initiate interrupt stress testing; when the

SUT has finished servicing interrupts, we

want to resume normal test conditions. In

both instances, the pattern generator moni-

tors the same system signal to prompt the

action. Detecting the difference between

these circumstances and reacting accord-

ingly is a key capability of the TLA700 stim-

ulus and acquisition system.

Real-time communication
Context-sensitive event recognition is mean-

ingless without real-time, “on the fly”

response to the event in question. And this

response isn’t possible unless the test system

allows real-time communication between its

components. The unique signal communica-

tions bus between modules in the TLA 700

systems allows logic analyzers to control

pattern generators and vice-versa. Test

systems that use simplistic start-and-stop

linkages cannot provide the real-time

communications required for stress testing

of today’s complex systems.

Pattern Generator Must Keep Pace With SUT Status

For further information, contact Tektronix:

Worldwide Web: for the most up-to-date product information visit our web site at: www.tektronix.com/LA
ASEAN Countries (65) 356-3900; Australia & New Zealand 61 (2) 9888-0100; Austria, Central Eastern Europe, Greece, Turkey, Malta,& Cyprus +43 2236 8092 0;
Belgium +32 (2) 715 89 70; Brazil and South America 55 (11) 3741-8360; Canada 1 (800) 661-5625; Denmark +45 (44) 850 700; Finland +358 (9) 4783 400;
France & North Africa +33 1 69 86 81 81; Germany + 49 (221) 94 77 400; Hong Kong (852) 2585-6688; India (91) 80-2275577; Italy +39 (2) 25086 501;
Japan (Sony/Tektronix Corporation) 81 (3) 3448-3111; Mexico, Central America, & Caribbean 52 (5) 666-6333; The Netherlands +31 23 56 95555; Norway +44 22 07 07 00;
People’s Republic of China 86 (10) 6235 1230; Republic of Korea 82 (2) 528-5299; South Africa (27 11)651-5222; Spain & Portugal +34 91 372 6000;
Sweden +46 8 477 65 00; Switzerland +41 (41) 729 36 40; Taiwan 886 (2) 2722-9622; United Kingdom & Eire +44 (0)1344 392000; USA 1 (800) 426-2200.

From other areas, contact: Tektronix, Inc. Export Sales, P.O. Box 500, M/S 50-255, Beaverton, Oregon 97077-0001, USA 1 (503) 627-1916.

0600 TD/XBS 52W-13770-0

Copyright © 2000, Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending.
Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved.
TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks,
trademarks or registered trademarks of their respective companies.

